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Abstract. The inverse eigenvalue problem for matrices is studied with the objective of
obtaining an efficient method for correcting energy levels in atomic systems, though the
results are applicable to any eigenvalue problem. The approach is a development of earlier
work by S Friedland. The diagonal elements of a real symmetric matrix with given
off-diagonal elements are adjusted to yield a given spectrum. We discuss cases where there
are real solutions and no real solutions, with particular emphasis on the latter. Problems
of slow convergence arise. We demonstrate the cause of this slow convergence, give a
geometrical interpretation of the problem and show how it can be avoided. Also the matrices

encountered arise from comptlex calculations and are subject to error. We develop an error
analysis that permits us, among other things, to judge whether corrections in any particular
case are justified in view of anticipated errors in the given computed off-diagonal matrix
elements. Finally, the method is demonstrated in an application to certain sets of levels in
12 times ionized {neon-like) titanium.

1. Introduction

A difficulty arises in the computation of the wavefunctions of complex atoms which
can be explored and alleviated by a discussion of the additive inverse eigenvalue
problem. The difficulty can be explained as follows. In computing the electronic
structure of an atom, one expands the atom’s state vector on a convenient algebraic
basis and the expansion coefficients are determined by solving the eigenvalue problem
for a certain matrix——~the Hamiltonian matrix. In many cases of interest, the diagonal
elements of the Hamiltonian differ by quantities that are comparable to the magnitudes
of one or more off-diagonal elements. This leads to expansion coefficients of the state
vector being comparable in size (i.e. the state vector is not dominated by one basis
vector with small admixtures of others). Also the expansion coefficients depend sensi-
tively on errors in the closely spaced diagonal elements and perhaps on errors in the
off-diagonal elements as well. This sensitive dependence on approximate computed
matrix elements implies possibly unacceptable errors in the atomic properties computed
using the atomic state vector—properties such as the radiative transition rates between
states,

The obvious resolution, namely greatly increasing the computational accuracy of
the diagonal matrix elements, is not feasible for many complex atoms and would be
very inefficient for others. Instead, we consider the application of a correction method
to obtain accurate state vectors. For this, we paint out that the eigenvalues of the
Hamiltonian matrix correspond to the energy levels of the atom and these can be
measured to a very high degree of accuracy. We therefore invert the eigenvalue problem
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using these known eigenvalues to obtain corrected diagonal matrix elements for the
Hamiltonian. Hence, diagonalizing the corrected Hamiltonian matrix, we obtain cor-
rected state vectors as well as other corrected properties such as radiative transition rates,

Previous articles give more detail on the physical problem and on one method of
solving this inverse eigenvalue problem {Luke 1985). In the present work we investigate
a different method of solution. This method is efficient and can be automated. It
provides some understanding of the important case where there is no real matrix of
physical interest with the computed off-diagonal ¢lements and the given observed
eigenvalues. (The physical Hamiltonian operator is Hermitian hence its diagonal
elements must be real.) Furthermore the present approach allows us to analyse numeri-
cally the effect of errors in the off-diagonal elements in a practical straightforward
way. This analysis, among other things, can reveal whether a real set of diagonal
elements can be obtained within the error range of the off-diagonal elements. It will
also reveal in any given case how sensitively the state vector depends on errors in the
Hamiltonian matrix. This is clearly important if we are to know the sensitivity of
calculated physical properties to errors in the computed Hamiltonian matrix,

In the next section, we describe precisely the mathematical problem under con-
sideration. Then we describe the case where there is a real solution of interest to the
inverse eigenvalue problem and following that we discuss in more detail the case where
the solution of interest is complex. Finally we give some results and summarize our
conclusions.

2. Statement of the problem

We consider the additive inverse eigenvalue problem: given a real symmetric n-
dimensional matrix A with zero diagonal elements, find a real diagonal matrix, D,
such that A+ D has a given set of real eigenvalues, @ = (o, , . . ., @,)”. Inthe applications
considered here, the case in which two or more eigenvalues are exactly equal does not
occur.

As stated by Friedland (1977), there are almost always n! solutions for D if complex
solutions are allowed. The number of real solutions for D in a particular application
varies from 0 to n!. We are always interested in a particular real solution whose
eigenvectors approximate most closely those which are physically observed. This
solution may not exist owing to errors in the elements of A. Nevertheless, there may
be a nearby complex solution. Thus the following modified additive inverse eigenvalue
problem is of physical interest and is studied in this paper.

Find real diagonal matrices D such that [|A — @||*= ] (A, — w;)* is a minimum where
A={(A,,..., r,)7 isthe set of eigenvalues of A+ D. Without loss of generality, we will
take the observed eigenvalues to be ordered w; > w;., and take X; w; =0 which implies
the trivial constraint Tr D =0. 1t follows that {A;} will satisfy X, A; =0. We also take
{A:} to be ordered A;> A, as in Friedland (1977).

We will consider the two cases when the minimum of ||A —e| has a zero or a
non-zero value and refer to these in the following as case 1 and case 2.

Case 1. To determine D when A = e, the most efficient algorithm is based on Newton’s
method (see e.g. Biegler-Konig 1981, Friedland et al 1987). We start with an initial
estimate D® and compute the estimates D', i = 1, 2, ... Assuming that D’ is known, the
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eigenvalues A° = (A{,...,A})" and normalized eigenvectors X} are computed:
(A+D)X = A XL (1)

We use the notation D' =diag (d}), d'=(d}, .. d')T

Next, the matrix J' = [(xJk)z]T is formed where x* is the jth component of X and
[x;] denotes the matrix whose ij component is x;. The elements of the rows of J are
thus the squares of the components of the normalized eigenvectors. The sum of the
elements in any column or row of J is unity which characterizes a doubly stochastic
matrix. The rows of J have the physical significance that the jjth element gives the
probability that a system in the ith physical state, an eigenstate, will be in the jth
algebraic basis state.

The (i+1) estimate, d"*'=d'+Ad’, is then determined by solving

JAL =g A (2)

as shown by Friedland et al _(1987). If the initial estimate is sufficiently close to the
correct root, the sequence {D’} is quadratically convergent.

Case 2. In the case of a non-zero minimum for || — A|], the calculation of the above
Ad' becomes highly unstable because J' becomes singular as we discuss shortly.
It is shown by Friedland (1977) that if we define a different increment Ad* by

Ad'=(J) (w-21%) (3)

then |A™"' - @] <||A"— w]| for Ad’ = 0. With this algorithm, the eigenvalue A" is closer
to the given eigenvalue @ after each iteration. This approach usually works weil
although, as we shall discuss later, in some cases the convergence of {D;} can be

A arlab al~
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In this section we describe a different approach from Friedland’s which allows us
to remove the problem of slow convergence and achieve the objective described in the
introduction. As we noted there, investigating this case is of particular interest in this
work. We seek an efficient algorithm to obtain the real point d* corresponding to a
set of eigenvalues A* where |[A* — ]| is @ minimum. We also seek to illustrate the
effect on d* and on {X¥} of fluctvuations in the matrix A and to estimate the changes
in A that will lead to the real spectrum w for the matrix A+D*. As a further benefit,
we will obtain a geometrical interpretation of our method and of Friedland’s.

A usefu! device for this study is the singular value decomposition of J' {Press et
al 1986, Noble and Daniel 1988). There exist orthogonal matrices U, V' and a diagonal
matrix W' with (distinct in our case) non-negative elements such that

Ji=Ur‘Wr'(vi)T' (4)
U’ V' and W' have a number of interesting properties that are useful in our study.
We describe them now. In the following, we will use the notation U;, V; for the Jth
columns of U, v respectively. Also let a= W%. For convenience, we order @) 50
that « >a,+, =0. Since J' is doubly stochasnc ozl—l (Minc 1988). In our case, aj
are dlstmct and, when J' is singular, «, =0. Examples where more than one a;—=0
can be given. They do not arise in the present work, however, and wtll not be con51dered
in the present analysis. Note also that

IVi=all} 5 (5)
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which follows from eq_uation (4), postmultiplying both sides by V' and using the fact
that the columns of V' form an orthonormal set.
Using this singular value decomposition of J', equation (3) becomes

Ad =VW U)(w-1")
=% aj(U)T(@ - ANV, (6)

If we premultiply both sides of equation (6) by J' we have, from equation (5),
Jad'= Z (@’ (U) (@ — A" DU (7)

which redues to equation (2) if (@})? is replaced by 1. Thus Ad’ can be regarded as a
modified Newton step. We return to the question of convergence later.

Recall that in the case of present interest, Ad’ >0 while | w—A’|| approaches a
non-zero minimum. We see from equation (6), therefore, that a,>0, U; becomes
orthogonal to @ —A' for j < n, and U, becomes parallel to @ — A’ since both become
perpendicular to the set of vectors U 3-, j<n. Also, we may expand w—A' in the basis
{U3}

w-A'=Y GU;. (&)
J

{Note that C,=0. This arises from the fact that ) =1 and equation (5) is satisfied by
Ul=Vi=n""%,1,1,...,1)7 which is orthogonal to all vectors of interest in A and
d spaces because of the summation constraints on w; and A; noted earlier.) Convergence
implies that C;»0 for j=2,...,n—~1and @ —A'> C}U}.

Recall that A*=(A¥,..., A*¥)7 is the vector yielding a minimum for || —A| and
we denote the solution obtained using equation (6) corresponding to A* by d*=
(d¥,...,d*)" where d¥ are all real. J is singular at A = A* and there is a surface in
A space through A* on which det(J) = 0 and a corresponding surface in d space through
d*. Denote these surfaces by S, and §,. S, has the property that if A moved across it
towards e, d would become complex. Our iteration procedure automatically avoids
this region where d is complex, thus the Hamiltonian matrix is real symmetric at all
times. The surface S, has the property that as d moves across it, A is reflected from
the surface S, thus ensuring that d remains real.

As a consequence of | @ — A || being a minimum at A =A*, @ —A* is normal to S,.
Referring to equation (8} and the discussion following it, therefore, we see that U :
approximates the normal to S, and the limiting vector U} is the exact normal to S,
at A = A*. We demonstrate that Vi and V¥ are the approximate and exact normals,
respectively, to S, at d* using the following first-order analysis. Using equation (6),
we can write

Ad =Y al((UD)T[@—A*+A*¥-A]V;
J
n—1
=a,CIV,+ E aj((U)T (A =AY, 9
i
if A® is on the smgular surface, S,. The first term drops out (since al equals Zero on
the surface), d is on the singular surface S4, and the vector Ad' = d* —d' has the form
E"21 BiVi where we have used the fact that the vector A*—A' has no first-order
component in the U direction. Thus, the set {V;}, i=2, n—1, defines the tangent
plane to the surface S; and the remaining vector, Vi, defines the normal.
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The increments in the iterative solution of the problem are related to the foregoing
vectors as follows. It is convenient to decompose the increments AA‘, Ad' into normal
and tangential components: AA'=AA,+AA{ where A™"' = A"+ AA’ and similarly for
the d increments. Then AA} is the projection of AA' in the U, direction, that is, in
the direction normal to the surface, S,. Also, AA} is the projection in the direction
normal to U}, that is, in the direction tangential to the surfaces S,, approximately.
Remarks corresponding to the foregoing can be made for the d increments, replacing
U'by V' and S, by S,. This follows from equation (6) as we have seen.

We use this geometrical picture to describe our computational method for obtaining
d’. Our approach to an efficient solution is the following. Start with an initial estimate
d® and use Newton’s method, equation (2), until |det(J')| is smaller than some
preassigned number so that we are close to the singular surfaces. Note that Newton’s
method is unstable for sufficiently small |det(J")|. To remove this instability, we compute
Ad’, and Ad} separately using the singular value decomposition of J'.

(i) From equation (6}, we let

Ad,=y,a, Vi[(U) (@—-A"] (10)
where y, =1 is a convergence factor. With y, =1, Ad,, is the normal component of
Friedland’s Ad' (equation (6)) and it is this term that contributes to the slow conver-

gence of {d'}. More precisely, we use a linear interpolation of the values of det(J') to
estimate the convergence factor ¥,:

Yol i = det(I") — det( )/ det(J) ~ det(I" )|
= |det(J")|/|det(J") - det(J )| (1)

where we use det(J“") =0 to obtain an estimate of the convergence factor that will
take us to the singular surface. To avoid extreme values which could arise under some
circumstances we apply the further constraint 1<y} <10% This results in a great
improvement in the rate of convergence compared with using v = 1.

(ii) Approximate AA;, the projection of (w—A') in the plane through A’ and

normal to U/Y, as

Ari=y[(0-A) —{(0-A2)UU,] (12)
where ¥, is a second convergence factor. This factor does not appear to have a dramatic
effect on the convergence; we took y, =1 in most cases.

Ad} is estimated in the following way. With w replaced by A* in Newton’s equation
(2) we have

AF—A'=J'Ad' (13)
where A* —A‘=AA' and Ad’' = Ad'. Thus we solve
(VW (VHT)Ad = AA| : (14)

which can be inverted to yield
Adi =V (W)(U)TAA!
=V'(diag(1/a;))(U")" AA}. (15)
Recall, however, that J’ = (U'W'(V'}7) is very nearly singular so that these equations
are ill conditioned. We obtain the least squares solution to the set of equations by

setting 1/a, =0 in equation (15). This results in the solution Ad; of minimum norm
as discussed by Press et al (1986).
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Note that as d' crosses the surface S; the sign of dgt(Ji) as well as the sign of U
or V, changes. As a consequence of equation (10), Ad, always points towards 5, the
surface on which the desired real solution lies.

3. Results and discussion

As we have noted, there are up to n! solutions to the inverse eigenvalue problem
though not all of these will be real. We wish to generate all real solutions and for each
of the complex solutions we seek the ‘solutions’ d* discussed in the last section,
Additional conditions may be needed to choose the desired physical solution for the
problem at hand. These depend on the particular problem and are not of primary
interest in this work which emphasizes the mathematical and numerical problem of
obtaining any solution in an efficient way,

We discuss the effect of this correction procedure for a model calculation on two
different sets of four coupled energy levels in the Ti X1 ion—12 times ionized titanium.
(This is not intended to provide a definitive set of results for this ion’s energy levels
but simply demonstrate the approach with realistic numerical data. The model calcula-
tions were performed as described in Luke 1985.) Calculations for the first set of states
lead to both real and complex solutions for the inverse eigenvalue problem while those
for the second lead only to complex solutions. These caiculations will be referred by
the designation of the states’ total angular momentum and parity as (1+) and {2-)
respectively.

Concerning the choice of initial vaiues, d4°, we have found that an effective way to
generate solutions was to start with each of the n! orderings of the given (observed)
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solutions, convergence may be slow as we have noted. Also, the global situation is not
yet well understood in the case of the complex solutions, case 2, which result in minima
rather than zeros of || — A . From studies involving varying the elements of the matrix
A, it is evident that the complex solutions evolve from coalescence of pairs of real
solutions but higher degeneracies may occur. At present, we can report only that we
have observed occasions where both one pair and more than one pair of the initial d°
vectors converged on the same minimum with eigenvalues, A*.

Recall that initially the matrix A+ D is computed in a model of the physical system
under consideration and this matrix is used to calculate a raw spectrum and set of
eigenvectors. We then seek to correct these by the procedure we have described. A
program has been written to perform the calculation of solutions automatically with
minimum input of the elements of the matrix A and the observed eigenvalues, ew.

In figure 1, we display the upper triangle portion of the symmetric raw matrix,
A+ D for each of the sets of states. Note that the diagonal elements are four orders
of magnitude larger than the largest of the off-diagonal elements while the differences
of these diagonal elements are comparable to the off-diagonal elements. In any practical
calculation, relative errors in the matrix elements of a few per cent are modest and to
be expected. Such relative errors are tolerable in the off-diagonal elements of A but
in the large diagonal elements, whose differences are the significant quantities in the
eigenvalue problem, they may lead to unacceptable errors in these differences and
hence in the eigenvectors as discussed in the introduction.

In the following, we first discuss aspects of the real solutions (case 1) and then
discuss the complex solutions (case 2).

ne Far snmnlay
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(a) —303.84479383 0.5376508983E-1 0.5093650404E-1 0.2036445484E-5
—303.8139624 —0.5883950266E-1 0.9587984935E-1
—303.8425767 —0.4586297764E-1

~304.0935668
(b) -302.589297 0.5604554352E-1 0.6594756648E-1 0.5116233681E-4
—302.55474604 —0.3137490645E-1 —0.8246505514E-1
—302.5681623 0.6493929052E-1

—30L.7139037

Figure 1. Raw, computed Hamiltonian matrix A+ D for (a) {1+) levels and (b) (2} levels.

The results for the real solutions from the correction procedure for the (1+) states
are summarized in table 1. Here we obtain six real solutions corresponding to the
ohserved spectrum, and for each solution we give the corrected diagonal elements
required to obtain the observed spectrum as well as the resulting probabilities. The
raw, calculated values for both quantities are also recorded. {The errors recorded for
the probability vectors of solution A in table 1(b) will be discussed later.} For
convenience, we have subtracted the trace from the diagonal elements. This has no
effect on the eigenvalue problem of course but should be kept in mind when relative
errors are considered.

Notice that in this particular model, for solution A which lies closest to the raw
calculated solution, the distance ||d.,,, — 4, | =0.025 65 and for all other solutions this
distance is much larger. If no other information is available, this fact as well as the
concomitant evidence from table 1(b), discussed below, would lead us to choose
solution A as the preferred corrected solution for the (1+) ion levels. (Other information
affecting the choice of solution might be the results of certain measurements on the
behaviour of the ion in a magnetic field which can be predicted from a knowledge of
the eigenvectors.)

If the original calculation is at all reasonable, the corrected results should lie
reasonably near by, as indicated by both the diagonal matrix elements and the probabit-
ity vectors and in this case this is seen to be so. Similarity, or otherwise, of corresponding
probability vectors is of course significant. The components of the probability vectors
are the squares of the components of the eigenvectors and they are listed in the same
order as the corresponding eigenvalues. The physical character of the levels depends
on the relative sizes of the components of the probability vectors. Thus we can see
from table 1( k) that the different solutions give vectors for a given eigenvalue that will
differ markedly from solution to solution.

We remark on one last point concerning this table. The eigenvalues and diagonal
matrix elements are comparably scaled in magnitude. The former are generally known
to a high degree of accuracy so it is significant that ||&d| » [|6A[. The changes in
probability vectors denoted by ||8P;)| are also rather large, indicating rather large
changes in physical behaviour of the corresponding states for the slight error or change
in eigenvalues. There is a tendency to believe that if the calculated spectrum is ‘fairly
close’ to the observed spectrum then the probablhtles will be satisfactory. These results

chnwu that thic may not ha trna The romnanci
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sensitively on the spectrum.

We consider next the question of sensitivity to fluctuations in off-dizgonal ele-
ments—that is, elements of the matrix A. It is a simple matter using our code to apply
perturbations to the elements of A in the neighbourhood of any solution, keeping the
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Table 1. Case 1, real solutions to inverse eigenvalue problem. (a) Raw and corrected
diagonal matrix elements and eigenvalues for {1+} levels in Ti XIII ion. (b) Raw
and corrected probability vectors corresponding to eigenvalues in (a). The subscript o
designates corrected values.

(a)
Raw A B c D E F A I

d, 005393 006943 008047  0.146850 013696 010376 006572 016425  0.16629
d; 008476 009235 -0.17032 —0.16703 —0.15705 ~0.15275 -000417 010581  0.10393
d 005615  0.03759 -0.02777 —0.00426 006690  0.1104%  0.11731 -0.04244 —0.04675
dy  —019484 -0.19088 011762 002441 —0.04682 006150 -0.17886 —022761 ~0.22347
84|t 0.02565 041285 035180 029562 028218 010974  ||Ba(l% 0.00660
(b)

Raw A B C D E F
P 0.031 0.059:£0.012 0.000 0.925 0772 0.302 0.070

0.661 0.713£0.013 0.097 0.012 0.00% 0.014 0.115

0.230 0.15140.023 0.092 0.064 0219 0.639 0.771

0.078 0.077 £0.003 0.810 0.000 0.007 0.044 0.044
6P, | 0.099 0.935 112 0.995 0.813 0.779
P, 0.608 0.63240.011 0.895 0.009 0.153 0.601 0.653

0.037 0052 0.006 0.018 0.158 0.164 0.140 0312

0.354 0.358+0.011 0.086 0.247 0.465 0.154 0.000

0.001 0.005+ 0,002 0.001 0.586 0217 0.106 0.035
[ETA 0.040 0.393 0.853 0.531 0.248 0.452
P, 0.360 0.307 £0,021 0.062 0.041 0.052 0.072 0.272

0.221 0.205 £ 0.006 0.052 0.001 0.068 0.111 0.411

0.408 0.482 4 0.027 0.745 0.642 0.297 0.195 6.226

0.011 0.006 £ 0.002 0.140 0.316 0.582 0523 0.090
{EEA 0.093 0.498 0.546 0676 0718 0.288
P, 0.001 0.001 £0.000 0.043 0.026 0.022 0.025 0.005

0.080 0.077 £0.003 0.832 0.829 0.766 0136 0.163

0.008 0.010:£ 0,001 0.077 0.047 0.018 0.012 0.002

0911 0.912:£ 0.003 0.043 0.097 0.194 0.227 0.831
(1A 0.004 1.148 1.107 0.993 0.948 0.116

t Where ||6d]; = )|d,..— 4,
F[8a] = 1A a0 — ool
§ Where 8P, = [P, o~ Piol.

matrix A symmetric, of course, and to calculate the resulting changes in various
quantities of interest.

In the case of a real solution for D yielding the observed spectrum we are interested
in the stability of the correction calculation with respect to esrors in the computed
elements of A. We have investigated this in two ways.

In appendix A, we outline a stability analysis based on computed norms for the
quantities of interest. This approach leads to rather exaggerated error estmates as one
would expect. Tighter error bounds derived directly from the calculations by applying
specific perturbations can be obtained. Our procedure was to apply small perturbations
to each of the elements of A in turn and to compute the resulting changes in probabilities.
A relatively crude but convenient and conservative error estimate is then obtained by
adding the absolute values of the changes in probabilities resulting from all the
perturbations in A;. The changes in the probability vectors corresponding to the worst
possible case, namely constructive addition of all perturbations—using a 1% shift in
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each of the elements of A—are then noted and recorded in table 1() for solution A
only, for illustration. The *analytic’ norm for this case resulted in a maximum error
that was about 0.14 which is about five times larger than the largest of the ‘numerical’
error estimates.

It is thus clear from the table that these numerical norms vield more realistic bounds
than the analytical norms, though we note that the purpose of calculating these is not
to obtain accurate error estimates so much as to show where the problem is ill-
conditioned. This does not occur in the present example where this procedure leads
to perturbations in the larger probabilities—which are the physically significant
ones—of only about 5% or less; however, if very large errors in probabilities were to
result from perturbations in A this would clearly warn the user to anticipate serious
uncertainties in such properties as transition rates between states that depend on the
probabilities.

We next consider some aspecis of complex solutions, case 2. These are the instances
where the set of diagonal matrix elements yielding the observed spectrum is complex
but one can calculate a set of real diagonal elements, denoted by d*, that yield an
approximation of the observed spectrum A, denoted A*, as described earlier in
section 2.

In table 2(a) we record the optimum sets of diagonal matrix elements, d*, obtained
as described in section 2, along with the corresponding eigenvalues for the four case
2 solutions obtained by our procedure. These results refer again to the (1+) levels. In
table 2(b} we give the raw and corrected probabilities for each of the solutions that
were found and, for solution G which is the one closest to the calculated (raw) solution,
we give the fluctuations induced by an accumulation of 1% fluctuations in the elements
of A as was done in table 1(b) for the real solutions.

This solution G is markedly closer to the raw, calculated one than any of the others
though it is substantially further than the real solution A as we can see from the norms
|8d| and ||6P;|| quoted in tables 1 and 2. It is also the case 2 solution that gives the
set of eigenvalues, A¥*, closest to the observed values. The errors on the probabilities
indicate that this solution is comparable in stability to the real solution, A.

It is, of course, not necessarily the case that the corrected solution corresponding
to the observed spectrum that is closest to the raw solution is a real solution as in the
foregoing set of levels, and indeed there may be no real solutions. Such is the situation
for the present calculation of four coupled (2—) levels in Ti X111 where we are therefore
forced to consider a complex nearby solution, d*, as the one best suited for use in
calculating corrected atomic properties.

We record in table 3 our results for the case 2 solutions found for these (2-) levels.
We see from the | 8A,, || values in table 3 that the approximate solution B comes closest
to the observed eigenvalues followed by D and then A. There would be a modest
perturbation of the matrix A that would cause B to be real, in fact, while leaving A
‘complex’. Nevertheless A is still the preferred approximation to the physical problem.
That this is the case becomes apparent from examining the relation of the diagonal
matrix elements, d;, and more importantly the probability vectors, P,. Approximate
solution A is clearly the one that evolves from the original calculation. The probability
vectors of A are similar to the raw vectors while those of B and D are entirely different.
That a complex sclution, d,,, evolved from the raw calculation (with a real solution
perhaps occurring elsewhere) is an accident of the closeness of the real-complex
boundary surface (S,) to this solution, not a reflection on the accuracy or relevance
of this complex solution.
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Table 2. Case 2 solutions to inverse eigenvalue problem. (a) Raw and corrected diagonal
matrix elements and eigenvalues for (1+) levels in Ti XIII ion, {b) Raw and corrected
probability vectors corresponding to eigenvalues in (a).

(a)
Raw G H i J Aw w
d, 0.053 93 0.03111 0.14060  —0.045 81 0.094 10
d, 0.084 76 0.068 88 0.00077  —0.169 33 0.039 56
d, 0.056 15 0.089 08 0.039 02 0.11329  -0.19564
d, —0.19484  —0.1890%8  —0.18039 0.101 86 0.061 98
||ad* (It 0.043 48 0.12275 0.407 1% 0.364 71
A¥ 0.166 14 0.167 63 0.188 58 0.17248 0.164 25 0.166 29
A% 0.101 77 0.113 25 0.079 70 0.103 14 0.105 81 0.103 93
A% —0.04441  —0.05692 —0.04313  —0.05221 -0.04224  —0.04675
A% —0.22350 —-0.22395 —0.22515 —0.22341  -0.22761  —0.22347
(2% 0.006 44 0.017 20 0.03578 0.013 85
[|8A. 1|8 0.003 19 0.013 87 0.033 16 0.008 29
(b)
Raw G H 1 J
P, 0.031 0.000 £ 0.000 0.881 0.007 0.137
0.661 0.4720.018 0.052 0.078 0.444
0.230 0.454+0.021 0.066 0.467 0.018
0.078 0.074+0.003 0.001 0.448 0.402
|6P. |11 0.295 1.061 0.730 0.456
p, 0.608 0.5190.014 0.001 0.115 0.784
0.037 0.210+0.018 0.417 0.028 0.004
0.354 0.266 £ 0.008 0.481 0.437 0.051
0.001 0.005 £0.001 0.102 0.420 0.161
| 8P| 0.214 0.734 0.652 0.387
Py 0.360 0.478+0.014 0.116 0.776 0.043
0.221 0.225 £0.009 0.382 0.083 0.502
0.408 0.275+0.015 0.449 0.067 0.024
0.011 0.022+0.003 0.053 0.074 0.431
(18P 0.178 0.29% 0.559 0.709
P, 0.001 0.002 £0.000 0.002 0.102 0.036
0.080 0.093 £0.004 0.149 0.811 0.050
0.008 0.005 £0.001 0.004 0.030 0.907
0.911 0.899 =0.000 0.844 0.058 0.006
[ETAl 0.018 0.096 1.128 1.276

t Where ||8d*} = |d,,, —d*|.
FIBAY[ =lAp . — A%
§|1BAL] = lleo — A%

§ Where [|8P,| = | P r — PH|-

Two questions are now of primary interest: we can ask as in the real case whether
the solutions are stable with respect to fluctuations in the elements of A as before in
the real case. Also, although the computed off-diagonat matrix A does not yield a real
solution near the point in question, we can ask what change in the elements of A will
allow a real solution near that point. In other words we enquire as to whether the
solution A which yields a non-zero minimum of |A ~e| would be a reasonable
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Table 3. Case 2 solutions to inverse eigenvalue problem. {g) Raw and corrected diagonal
matrix elements and eigenvalues for (2—) levels of Ti XIII ion. {b} Raw and corrected
probability vectors corresponding to eigenvalues of {(a).

(a)
Raw A B C D E A ]
d¥ 002043 001793 0.06272 -0.10341  0.07137 007310
d3 004390 004771 003983 005739 -0.09798  0.00428
d¥ 003820 003790 —0.00472 006966 -0.00838 —0.10599
d} -0.107 54 —0.10354 —0.09783 —0.02364 0.03500 002861
|| &e*|| 000487 006170 015309  0.21600 020998
AT 012315 012325  0.15569 012503 012985 012319  0.12340
A% 0.10108 010211 007525  0.10255 010111 010269  0.10345
Af —0.07204 -007339 ~-0.08535 —0.07551 —0.07913 -0.07050 -0.07460
AY ~0.15219 -015197 014550 015207 (15183 -0.1553¢ 015224
[l 8A¥(% 000390 000452 0.4611 0.00629  0.011 58
[EZS 000350 000184 004470 000208  0.008 23
(b}
Raw A B C D E
P, 0.002 0.001£0.001 0.511 0.001 0.325 0.254
0.522 0.509 +0.028 0.433 0.364 0.021 0.399
0.305 0.314£0.034 0.009 0.384 0.345 0.01%
0171 0.176 +0.005 0.047 0.252 0.309 0.336
Al 0.017 0.608 0.195 0.613 0.439
P, 0.523 0.519£0.017 0.203 0.188 0.490 0.588
0.160 0.171£0.032 0.207 0.381 0.188 0.010
0316 0.310+0.014 0.429 0.424 0.001 0.169
0.000 0.000 £ 0.000 0.160 0.007 0.319 0.223
J| 6P 0.013 0.378 0.415 0.450 0.321
P, 0.475 0.480+0.018 0.285 0.007 0.110 0.066
0.207 0.204 £0.006 0.257 0.156 0.004 0.566
0318 0.315£0.015 0.452 0.099 0.626 0.002
0.001 0.001 £ 0.001 0.006 0.738 0.260 0.366
(I8P 0.007 0.238 0.902 0.530 0.727
P, 0.000 0.000=:0.000 0.000 0.805 0.074 0.092
0.111 0.115:£0.007 0.104 0.100 0.787 0.025
0.061 0.062 +0.006 0.109 0.093 0.028 0.817
0.828 0.823 +0.003 0.787 0.003 0.110 0.065
(T3] 0.006 0.064 1.153 0.989 1.082

+ Where |[8d*|| = ||d,q,, — d*|.
¥ Where [8A¥] = [IA = A*].
§iBAL]=le-A%.
% Where [|8F | = {| P\ — Pl

approximation for the physical state given that the computed A is subject to modest

EITors.,

For the first question, we record in table 3 the changes in probability vectors
resulting from perturbations in A. This information corresponds to that in table 2 for
the real solutions and it appears that these solutions are again fairly stable. Constructive
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addition of the results of 1% shifts in the elements of A lead to maximum probability
shifts of 0.03 roughly, so there is no sign of significant ill-conditioning.

Concerning the second question, we note that in complex cases, when D, A*, and
the eigenvectors are known, it is possible to perturb A to A+AA in such a way that
the eigenvectors, hence the probabilities, are unchanged and the eigenvalues of the
new matrix D+ A+ AA are o, the observed eigenvalues. For this perturbation we have

D+A+AA =[x, J(diag(ew,))[xx]" {16)
and hence
AA =[xz ](diag(e; — AF)Mxu 1" (17)

This perturbation is interesting in that it gives the change in A that yields a matrix
with the observed spectrum, w, and the same eigenvectors or equivalently the same
probabilities as those of the corrected matrix A+ D* which results from the non-zero
optimum of A —a|. If the resulting changes in A are within the expected range of
its errors in a given calculation, the non-zero optimum can justifiably be used for
calculating eigenvectors and resulting physical properties for the system.

We record in table 4 some relevant numerical results, namely the fluctuations in
the elements of A required to produce a real solution that is very close to the ‘optimum’
solution, A, and has as described in the foregoing the same eigenvectors but with the
observed eigenvalues. In this example, at least, the perturbations on A are very
small—less than 3% changes in the larger elements, which are the significant ones for
mixing levels, yield a real solution in place of A. We also see from table 3 that the
probability vectors are reasonably stable in the neighbourhood of the solution A. In
this case, therefore, it is acceptable to use the eigenvectors from solution A as corrected
vectors for the problem.

Table 4. Elements of off-diagonal matrix A and the fluctuations required to produce a
matrix A-+D with observed eigenvalues and the eigenvectors obtained from optimum

solution A.

14 A A

12 0.56E-1 0.15E-2
13 0.66E-1 0.19E-2
14 0.51E-4 -0.35E-4
23 -{.31E-1 —{.20E-3
24 —0.82E-1 —-0.46E-4
34 0.65E-1 0.12E-3

The present calculation is of course somewhat unfortunate inasmuch as it is actually
too accurate so that it is somewhat misleading. As we have pointed out, the corrected
solution A is within the noise of a real corrected solution with the observed eigenvalues
and the corrected eigenvectors. At the same time, from the fluctuations in the proba-
bilities recorded in table 3, we see that even the raw solution does not differ significantly
from the optimum corrected solution. One might as weil use the raw resulis in this
case it seems. Nevertheless, the point is obviously that in another calculation the
corrected solution could move substantially away from the raw calculation so that the
latter would not be useful. In this case, considerations analogous to those illustrated
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in table 4 would be important in showing whether the optimum corrected solution was
reasonable.

To conclude, we have described a method for applying inverse eigenvalue problem
corrections to calculations in atomic systems. We have discussed questions of errors
and shown how our approach can be used directly to judge the validity of the corrected
solutions we obtain.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council
of Canada.

Appendix A. Estimate of errors for case 1

Suppose we have obtained a solution of A+ D =XOX" where Q is the diagonal matrix
of eigenvalues and X is the matrix of eigenvectors. If we perturb A to A+ AA, reflecting
errors in the computed A matrix, then perturbations AD and AX are induced in D and
X. We estimate AD and AX using the linearizing approach in ‘method 11T’ of Friedland
et al {1987).

Let X+AX =X ¢¥ where Y” = —Y. Substituting into

(X+AX)" (A+D+AA+AD)(X+AX) =) (A1)
and expanding e¥, so that AX= XY, we obtain the linearized form

X" (A+D+AA+AD)X=0+YQ-QY. (A2)
Hence

X"(AA+AD)X=YQ - QY. {A3)

Upon equating diagonal and off-diagonal elements we obtain the following two
equations:

Jad=-[{(X;)" sAX)] (A4)
and
Yy(w;—w:)=(X;)T(AA+AD)X;. (AS)

We also estimate an upper limit for the resulting perturbation in the probabilities.
This is defined by

APy = (Xp+AXy Y —( Xy ) = 2X0 A Xy
=Z, 2 XX Yy (A6)

where Y, is given by equation (AS).
We assume the elements of A to be subject to a percentage error, P, so that

P
Ay

AA; = +—
100
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Without taking the specific structure of AA; into account, we now construct upper
estimates for Ad and APy as follows, Using equation (Ad4) and taking norms we abtain
lAd]|c= 17 |l (X;) T AAX]|oo.
Also
[(X) TAAX < [[(X) || AA |2 X -

The eigenvectors X; are normalized and for the symmetric matrix AA we have
laA,=|[aA], = | AA].
Therefore
X/ AAX| < [AA}
and finally
1A} [ o o A (A7)
100
Deriving a bound on AP; we have, using equation (A6),
Xi X
AP, =2X,CT(AA+AD)X, whete C=C(L k)= % (X0)
i=k Wy — Wy
Therefore
8P| = 2| Xu| 1€, k)| 8Al+ | AD]l)
. P ,
< 20Xl 1604 )l 7 (117" o)A (A8)

where we have used equation (A7).
Note that |[C(j, k)|, can be simplified:

e, k)||2=( 5 ﬂZ_)uz

17 (e _w!)z

which is readily calculated.
The maximum error defined as Max,, |P| can now be readily calculated.
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