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On the inverse eigenvalue problem for matrices 

. A S  . - neakin - and - T M  . . 1.uke - -.. 
Department of Applied Mathematics, University of Westem Ontario, London, Ontario, 
Canada N6A 5B9 

Received 23 April 1991, in final form 9 October 1991 

Abstract. The inverse eigenvalue problem for matrices is studied with the objective of 
obtaining an efficient method far correcting energy levels in atomic systems, though the 
results are applicable to any eigenvalue problem. The approach is a development of earlier 
work by S Friedland. The diagonal elements of a real symmetric matrix with given 
off-diagonal elements are adjusted to yield a given spectrum. We discuss cases where there 
are real solutions and no real solutions, with particular emphasis on the latter. Problems 
of slow convergence arise. We demonstrate the causd o f  this slow convergence, give a 
oenmdriral internretitinn nf the .... nrnhlem I and qhnw how i t  can ~~ he .. ~~ avoided. .~~~~ ~~~~~ Also the ~~~~ matrices ~~~ 

encountered arise from complex calculations and are subject to error. We develop an error 
analysis that permits us, among other things, to judge whether corrections in any particular 
case are justified in view of anticipated errors in the given computed off-diagonal matrix 
elements. Finally, the method is demonstrated in an application to certain sets of levels in 
12 times ionized (neon-like) titanium. 

1. Introduction 

A difficulty arises in the computation of the wavefunctions of complex atoms which 
can be explored and alleviated by a discussion of the additive inverse eigenvalue 
problem. The difficulty can be explained as follows. In computing the electronic 
structure of an atom, one expands the atom’s state vector on a convenient algebraic 
basis and the expansion coefficients are determined by solving the eigenvaiue problem 
for a certain matrix-the Hamiltonian matrix. In many cases of interest, the diagonal 
elements of the Hamiltonian differ by quantities that are comparable to the magnitudes 
of one or more off-diagonal elements. This leads t o  expansion coefficients of the state 
vector being comparable in size (i.e. the state vector is not dominated by one basis 
vector with small admixtures of others). Also the expansion coefficients depend sensi- 
tively on errors in the closely spaced diagonal elements and perhaps on errors in the 
off-diagonal elements as well. This sensitive dependence on approximate computed 
matrix elements implies possibly unacceptable errors in the atomic properties computed 
using the atomic state vector-properties such as the radiative transition rates between 
states. 

The obvious resolution, namely greatly increasing the computational accuracy of 
t h e  diagonal matrix elements, is not feasible for many complex atoms and would be 
very inefficient for others. Instead, we consider the application of a correction method 
to obtain accurate state vectors. For this, we point out that the eigenvalues of the 
Hamiltonian matrix correspond to the energy levels of the atom and these can be 
measured to a very high degree of accuracy. We therefore invert the eigenvalue problem 
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using these known eigenvalues to obtain corrected diagonal matrix elements for the 
Hamiltonian. Hence, diagonalizing the corrected Hamiltonian matrix, we obtain cor- 
rected state vectors as well as other corrected properties such as radiative transition rates, 

Previous articles give more detail on the physical problem and on one method of 
solving this inverse eigenvalue problem (Luke 1985). In the present work we investigate 
a different method of solution. This method is efficient and can be automated. It 
provides some understanding of the important case where there is no real matrix of 
physical interest with the computed off-diagonal elements and the given observed 
eigenvalues. (The physical Hamiltonian operator is Hermitian hence its diagonal 
elements must be real.) Furthermore the present approach allows us to analyse numeri- 
cally the effect of errors in the off-diagonal elements in a practical straightforward 
way. This analysis, among other things, can reveal whether a real set of diagonal 
elements can be obtained within the error range of the off-diagonal elements. It will 
also reveal in any given case how sensitively the state vector depends on errors in the 
Hamiltonian matrix. This is clearly important if we are to know the sensitivity of 
calculated physical properties to errors in the computed Hamiltonian matrix. 

In the next section, we describe precisely the mathematical problem under con- 
sideration. Then we describe the case where there is a real solution of interest to the 
inverse eigenvalue problem and following that we discuss in more detail the case where 
the solution of interest is complex. Finally we give some results and siimmarize our 
conclusions. 

A. S Deakin and T M Luke 

2. Statement of the problem 

We consider the additive inverse eigenvalue problem: given a real symmetric n- 
dimensional matrix A with zero diagonal elements, find a real diagonal matrix, D, 
such that A+ D has agiven set of real eigenvalues, w = (q, . . . , U")?  Inthe applications 
considered here, the case in which two or more eigenvalues are exactly equal does not 
occur. 

As stated by Friedland (1977), there are almost always n !  solutions for D if complex 
solutions are allowed. The number of real solutions for D in a particular application 
varies from 0 to n ! .  We are always interested in a particular real solution whose 
eigenvectors approximate most closely those which are physically observed. This 
solution may not exist owing to errors in the elements of A. Nevertheless, there may 
be a nearby complex solution. Thus the following modified additive inverse eigenvalue 
problem is of physical interest and is studied in this paper. 

Find real diagonal matrices D such that I/A - w1I2 = Z;(A, -U,)' is a minimum where 
A = ( A , ,  . . . , is the set of eigenvalues of A+D. Without loss of generality, we will 
take the observed eigenvalues to be ordered w ,  > w,+, and take X, w,  = O  which implies 
the trivial constraint Tr D = 0. It follows that {A,} will satisfy 2, A, = 0. We also take 
{,if} to he ordered A, > A,,, as in Friedland (1977). 

We will consider the two cases when the minimum of I/A-wll has a zero or a 
non-zero value and refer to these in the following as case 1 and case 2. 

Case 1. To determine D when A = w, the most efficient algorithm is based on Newton's 
method (see e.g. Biegler-Konig 1981, Friedland el a /  1987). We start with an initial 
estimate Do and compute the estimates D', i =  1,2,. , . Assuming that D' is known, the 
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eigenvalues A' = ( A i , .  . . , and normalized eigenvectors Xi are computed: 

We use the notation D'=diag (d:.), d ' = ( d i , . .  ., d'.)T. 
Next, the matrix J' = [(x;$IT is formed where xi, is the j th  component of X; and 

[x,] denotes the matrix whose ij component is xY. The elements of the rows of J are 
thus the squares of the components of the normalized eigenvectors. The sum of the 
elements in any column or row of J is unity which characterizes a doubly stochastic 
matrix. The rows of J have the physical significance that the ijth element gives the 
probability that a system in the ith physical state, an eigenstate, will be in the j th  
algebraic basis state. 

The ( i + l )  estimate, d + ' =  d ' f  Ad', is then determined by solving 

as shown by Friedland ef a/ (1987). If the initial estimate is sufficiently close to the 
correct root, the sequence IDi} is quadratically convergent. 

Case 2. In the case of a non-zero minimum for 1 1 0  - A l l ,  the calculation of the above 
Ad' becomes highly unstable because J' becomes singular as we discuss shortly. 

It is shown by Friedland (1977) that if we define a different increment Ad' by 

A d i = ( J i ) T ( w - A ' )  (3) 

then IlA'+' - w 11 < l lAi  - w 11 for Ad' # 0. With this algorithm, the eigenvalue A i  is closer 
to the given eigenvalue w after each iteration. This approach usually works well 
although, as we shall discuss later, in some cases the convergence of ID,) can be 
-m...--,,ml.,.. ^I  ^..I LcnlaLnavrJ -1"w. 

In this section we describe a different approach from Friedland's which allows us 
to remove the problem of slow convergence and achieve the objective described in the 
introduction. As we noted there, investigating this case is of particular interest in this 
work. We seek an efficient algorithm to obtain the real point d* corresponding to a 
set of eigenvalues A* where / IA*-w/ l  is a minimum. We also seek to illustrate the 
effect on d* and on (Xf] of fluctuations in the matrix A and to estimate the changes 
in A that will lead to the real spectrum w for the matrix A+D*. As a further benefit, 
we will obtain a geometrical interpretation of our method and of Friedland's. 

A useful device for this study is the singular value decomposition of J' (Press et 
a/ 1986, Noble and Daniel 1988). There exist orthogonal matrices U', V' and a diagonal 
matrix W' with (distinct in our case) non-negative elements such that 

J'  = U~Wi(V')T, (4) 

U', V '  and W' have a number of interesting properties that are useful in our study. 
We describe them now. In the following, we will use the notation U;, Vj for the j th  
columns of U', V respectively. Also let ai. = Wi. .  For convenience, we order a; so 
that a:>.;+, PO. Since J' is doubly stochastic, ai= 1 (Minc 1988). In our case, a; 
are distinct and, when J' is singular, a L = O .  Examples where more than one a i - 0  
can be given. They do not arise in the present work, however, and will not be considered 
in the present analysis. Note also that 
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which follows from equation (4), postmultiplying both sides by V and using the fact 
that the columns of V form an orthonormal set. 

A S Deakin and T M Luke 

Using this singular value decomposition of J', equation ( 3 )  becomes 

Ad' =V.W.(ui)'(w - A ' )  

=I ai(( Uj)'(w - A ' ) ) V i .  ( 6 )  

If we premultiply both sides of equation (6) by J' we have, from equation ( S ) ,  

J'Ad' = 1 (a;)2(( U;.)'(w -A'))U;.  (7) 

which redues to equation (2)  if is replaced by 1. Thus Ad' can be regarded as a 
modified Newton step. We return to the question of convergence later. 

Recall that in the case of present interest, Ad'+O while Ilw-A'Il approaches a 
non-zero minimum. We see from equation ( 6 ) ,  therefore, that a;+O, U:  becomes 
orthogonal to  w - A i  for j < n, and U ;  becomes parallel to w - A '  since both become 
perpendicular to the set of vectors U ; ,  j < n. Also, we may expand w - A i  in the basis 
{ U ; }  

w-Ai= lC,U; .  (8) 

(Note that C, =O.  This arises from the fact that a; = 1 and equation ( 5 )  is satisfied by 
U :  = V i  = n-"2(l, 1 ,  1, . . . , 1)' which is orthogonal to all vectors of interest in A and 
d spaces because of the summation constraints on oj and Ai noted earlier.) Convergence 
implies that Cj-0 for j = 2 , .  . . , n - 1 and w - A ' +  C:U:.  

Recall that A *  = ( A t , .  . . , AX)' is the vector yielding a minimum for 110 - A  11 and 
we denote the solution obtained using equation ( 6 )  corresponding to A* by d * =  
( d f ,  , , . , d:)' where dT are all real. J is singular at A = A *  and there is a surface in 
A space through A* on which det(J) = 0 and a corresponding surface in d space through 
d*. Denote these surfaces by SA and S,. SA has the property that if A moved across it 
towards w, d would become complex. Our iteration procedure automatically avoids 
this region where d is complex, thus the Hamiltonian matrix is real symmetric at all 
times. The surface S, has the property that as d moves across it, A is reflected from 
the surface SA thus ensuring that d remains real. 

As a consequence of IIw -All being a minimum at A = A * ,  w-A* is normal to SA. 
Referring to equation (8) and the discussion following it, therefore, we see that U ;  
approximates the normal to SA and the limiting vector U:  is the exact normal to SA 
at A = A * .  We demonstrate that V ;  and V y  are the approximate and exact normals, 
respectively, to S, at d* using the following first-order analysis. Using equation (61, 
we can wriie 

Adi  = 1 a;(( U;)'[ w - A *  + A *  - A '1) V; 
j 

if A '  is on the singular surface, SA. The first term drops out (since m; equals zero on 
the surface), d' is on the singular surface S,, and the vector Ad' = d* - d' has the form 
Z;; :p jV;  where we have used the fact that the vector * * - A '  has no first-order 
component in the U ;  direction. Thus, the set { V j } ,  j = 2, n - 1, defines the tangent 
plane to the surface S, and the remaining vector, V : ,  defines the normal. 
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The increments in the iterative solution of the problem are related to the foregoing 
vectors as follows. It is convenient to decompose the increments AA', Ad' into normal 
and tangential components: AAi=AA;+AA: where A'+' = A'+AA' and similarly for 
the d increments. Then AA; is the projection of AAi in the U;  direction, that is, in 
the direction normal to the surface, SA. Also, AA: is the projection in the direction 
normal to U:, that is, in the direction tangential to the surfaces SA, approximately. 
Remarks corresponding to the foregoing can be made for the d increments, replacing 
U' by V' and SA by S,. This follows from equation (6) as we have seen. 

We use this geometrical picture to describe our computational method for obtaining 
d'. Our approach to an efficient solution is the following. Start with an initial estimate 
do and use Newton's method, equation (2), until Idet(J')I is smaller than some 
preassigned number so that we are close to the singular surfaces. Note that Newton's 
method is unstable for sufficiently small Idet(J')I. To remove this instability, we compute 
Ad" and A d  separately using the singular value decomposition of J'. 

(i) From equation ( 6 ) ,  we let 

Ad; = y;aL V;[( U;)'(W - A i ) ]  (10) 
where y ; >  1 is a convergence factor. With yk = 1, Ad; is the normal component of 
Friedland's Ad' (equation (6)) and it is this term that contributes to the slow conver- 
gence of {d'}. More precisely, we use a linear interpolation of the values of det(J') to 
estimate the convergence factor yb: 

y ; / y ; - ' =  tdet(J'+')-det(J')l/ldet(J')-det(J'~')I 

= Idet(J')l/ldet(J')-det(J'-')l ( 1 1 )  

where we use det( J'") = 0 to obtain an estimate of the convergence factor that will 
take us to the singular surface. To avoid extreme values which could arise under some 
circumstances we apply the further constraint 1 s y ;  s lo4. This results in a great 
improvement in the rate of convergence compared with using yb = 1. 

(ii) Approximate AA:, the projection of ( U - A ' )  in the plane through A '  and 
normal to U : ,  as 

AA:= y,[(w - A ' ) - { ( u  -A')'U;)U;] (12) 
where y ,  is a second convergence factor. This factor does not appear to have a dramatic 
effect on the convergence; we took y ,  = 1 in most cases. 

Ad: is estimated in the following way. With U replaced by A* in Newton's equation 
(2) we have 

A * - A ' =  J'Ad' (13) 

(U'W(V)')Ad: =AA: (14) 

where A*-Ai-AA: and Ad'=Adi .  Thus we solve 

which can be inverted to yield 
Ad: = V'(W')-'(U')'&Ai 

=V'(diag(l/a,))(U')'AAI. (15) 

Recall, however, that J '=  (U'W'(V')r) is very nearly singular so that these equations 
are ill conditioned. We obtain the least squares solution to the set of equations by 
setting l/a.=O in equation (15). This results in the solution Ad: of minimum norm 
as discussed by Press el al (1986). 
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Note that as d' crosses the surface S, the sign of det( J') as well as the sign of U; 
or V: changes. As a consequence of equation (IO),  Ad: always points towards S,, the 
surface on which the desired real solution lies. 

3. Results and discussion 

As we have noted, there are up to n! solutions to the inverse eigenvalue problem 
though not all of these will be real. We wish to generate all real solutions and for each 
of the complex solutions we seek the 'solutions' d* discussed in the last. section, 
Additional conditions may be needed to choose the desired physical solution for the 
problem at hand. These depend on the particular problem and are not of primary 
interest in this work which emphasizes the mathematical and numerical problem of 
obtaining any soiution in an eficient way. 

We discuss the effect of this correction procedure for a model calculation on two 
different sets of four coupled energy levels in the Ti XI11 ion-12 times ionized titanium. 
(This is not intended to provide a definitive set of results for this ion's energy levels 
but simply demonstrate the approach with realistic numerical data. The model calcula- 
tions were performed as described in Luke 1985.) Calculations for the first set of states 

for the second lead only to complex solutions. These calculations will be referred by 
the designation of the states' total angular momentum and parity as (1+) and (2-) 
respectively. 

Concerning the choice of initial values, d", we have found that an effective way to 
generate solutions was to start with each of the n! orderings of the given (observed) 
P;nnn.rallnnr Na..rtnn9r mnth.lA cnnllpmllc -q-&41.7 fnr G.llnlt;nn. CA. ,-nmnlPI 
*'6'..,U'U'l. I . * * I L Y I L  1 I . L I L I . Y "  "Y....,L6C" Lap'"., I Y L  L l Y .  I " L Y I I Y . L I .  L Y. 'V'.Lp..," 

solutions, convergence may be slow as we have noted. Also, the global situation is not 
yet well understood in the case of the complex solutions, case 2, which result in minima 
rather than zeros of IIw - A  I/. From studies involving varying the elements of the matrix 
A, it is evident that the complex solutions evolve from coalescence of pairs of real 
solutions but higher degeneracies may occur. At present, we can report only that we 
have observed occasions where both one pair and more than one pair of the initial do 
vectors converged on the same minimum with eigenvalues, A'. 

Recall that initially the matrix A +  D is computed in a model of the physical system 
under consideration and this matrix is used to calculate a raw spectrum and set of 
eigenvectors. We then seek to correct these by the procedure we have described. A 
program has been written to perform the calculation of solutions automatically with 
minimum input of the elements of the matrix A and the observed eigenvalues, o. 

In figure 1, we display the upper triangle portion of the symmetric raw matrix, 
A+D for each of the sets of states. Note that the diagonal elements are four orders 
of magnitude larger than the largest of the off-diagonal elements while the differences 
of these diagonal elements are comparable to the off-diagonal elements. In any practical 
calculation, relative errors in the matrix elements of a few per cent are modest and to 
be expected. Such relative errors are tolerable in the off-diagonal elements of A but 
in the large diagonal elements, whose differences are the significant quantities in the 
eigenvalue problem, they may lead to unacceptable errors in these differences and 
hence in the eigenvectors as discussed in the introduction. 

In the following, we first discuss aspects of the real solutions (case I )  and then 
discuss the complex solutions (case 2). 

iead io 'DOih reai and compiex soi~uiions for inverse eigenvaiue probiem whiie i'nose 
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(4) -303.8447983 0.5376508983E-1 0.5093650404E-1 0.2036445484E-5 
-303.8139624 -0.5883959266E-1 0.9587984935E-1 

-303.8425767 -0.4586297764E-1 
-304.0935668 

( b )  -302.589297 0.5604554352E-1 0.6594756648E-1 0.5116233681E-4 
-302.55474604 -0.3137490645E-1 -0.8246505514E-1 

-302.5681623 0.6493929052E-I 
-jOi,5ijyojf 

Figure 1. Raw, computed Hamiltonian matrix A+ D far ( 0 )  ( I + )  levels and ( b )  (2-) levels. 

The results for the real solutions from the correction procedure for the ( I f )  states 
are summarized in table 1. Here we obtain six real solutions corresponding to the 

required to obtain the observed spectrum as well as the resulting probabilities. The 
raw, calculated values for both quantities are also recorded. (The errors recorded for 
the probability vectors of solution A in table 1 ( b )  will be discussed later.) For 
convenience, we have subtracted the trace from the diagonal elements. This has no 
effect on the eigenvalue problem of course but should be kept in mind when relative 
errors are considered. 

Notice that in this particular model, for solution A which lies closest to the raw 
calculated solution, the distance lldraw - d, 1) = 0.025 65 and for all other solutions this 
distance is much larger. If no other information is available, this fact as well as the 
concomitant evidence from table l (b) ,  discussed below, would lead us to choose 
solution A as the preferred corrected solution for the (It) ion levels. (Other information 
affecting the choice of solution might be the results of certain measurements on the 
behaviour of the ion in a magnetic field which can be predicted from a knowledge of 
the eigenvectors.) 

If the original calculation is at all reasonable, the corrected results should lie 
reasonably near by, as indicated by both the diagonal matrix elements and the probabil- 
ity vectors and in this case this is seen to be so. Similarity, or otherwise, of corresponding 
probability vectors is of course significant. The components of the probability vectors 
are the squares of the components of the eigenvectors and they are listed in the same 
order as the corresponding eigenvalues. The physical character of the levels depends 
on the relative sizes of the components of the probability vectors. Thus we can see 
from table l ( b )  that the different solutions give vectors for a given eigenvalue that will 
differ markedly from solution to solution. 

We remark on one last point concerning this table. The eigenvalues and diagonal 
matrix elements are comparably scaled in magnitude. The former are generally known 
to a high degree of accuracy so it is significant that /16dll>> 116A11. The changes in 
probability vectors denoted by I16PjJJ are also rather large, indicating rather large 
changes in physical behaviour of the corresponding states for the slight error or change 
in eigenvalues. There is a tendency to believe that if the calculated spectrum is 'fairly 
close' to the observed spectrum then the probabilities will be satisfactory. These results 

sensitively on the spectrum. 
We consider next the question of sensitivity to fluctuations in off-diagonal ele- 

ments-that is, elements of the matrix A. It is a simple matter using our code to apply 
perturbations to the elements of A in the neighbourhood of any solution, keeping the 

nhrerved spectr?lm, and for each so!ution w e  givc the corrected diagona! e!ements 

show :ha: :his --ay x: be :rue The co.??p~:ltioo of the !eve!s m q  depezd r2:hti 
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Table 1. Case 1. real soIulions 10 inverse eigenvalue problem. ( a )  Raw and corrected 
diagonal malrix elements and eigenvalues for (1+) levels in Ti X l l l  ion. ( h )  Raw 
and corrected probability vectors corresponding to eigenvalues in ( a ) .  The subscript w 
designates corrected values. 

Raw A B C D E F La* 0 

d, 0.05393 0.06943 0.08047 0.14689 0.13696 0.10316 0.06572 0.16425 0.16629 
d2 0.08416 0.09235 -0.17032 -0.16703 -0.15705 -0.15215 -0.00417 0.10581 0.10393 
d, 0.05615 0.03159 -0.02111 -0.00426 0.06690 0.11049 0.11131 -0.04244 -0.04675 
d4 -0,19484 -0,19088 0.11762 0.02441 -0.04682 -0.06150 -0.17886 -0.22161 -0.22341 
ll6dlIf 0.02565 0.41285 0.351 no 0.29562 0.282 18 0.10914 I I ~ A ~ I ~  0.00660 

( b )  

Raw A B C 0 E F 

11 6P. I1 

0.031 
0.661 
0.230 
0.018 

0.608 
0.037 
0.354 
0.001 

0.360 
0.221 
0.408 
0.011 

0.001 
0.080 

0.91 I 
0.008 

0.059i-0.012 
0.113i0.013 
0.151+0.023 
n.miio.003 
0.099 

0.63210.011 
0.005*0.006 

0.005*0.w2 
0.040 

0.307 *0.021 
0.205*0.006 
0.482i0.027 
0.006 i 0.002 

0.358-to.011 

0,093 

0 .07iso .w3 
0.001 *o.ooo 

0.010*0.001 
0.912* 0.003 
0.004 

0.000 
0.097 
0.092 

0.935 
0.810 

0.895 
0.018 
0.086 
0.001 
0.393 

0.062 
0.052 
0.745 
0.140 
0 . w  

0.043 
0.832 
0.077 
0.048 
1.148 

0.925 
0.012 
0.064 
0.000 
1.12 

0.009 

0.247 
0.158 

0.586 
0.853 

0.041 
0.001 
0.642 
0.316 
0,546 

0.026 
0.829 
0.047 
0.097 
1.107 

0.772 
0.001 
0.219 
0.007 
0.995 

0.153 
0.164 
0,465 
0.217 
0.531 

0.052 

0.297 
0.068 

0.582 
n . s 6  

0.022 
0.766 

0.194 
0.993 

0.018 

0.302 
0.014 
0.639 
0.044 
0.813 

0.140 

4.248 

0.601 

0.154 
0.106 

0.072 
0.111 
0.195 

o.i!e 
0.623 

0.025 

0.012 

0.948 

0.736 

0.227 

0.070 
0.115 
0.171 
0.044 
0.170 

0.653 
0.312 
0.000 
0.035 
0.452 

0.272 
0.411 
0.226 
0.w0 
0.288 

0.W5 
0.163 
0.002 

0.116 
0.831 

matrix A symmetric, of course, and to calculate the resulting changes in various 
quantities of interest. 

In the case of a real solution for D yielding the observed spectrum we are interested 
in the stability of t'he correction caicuiation with respect to errors in tne computed 
elements of A. We have investigated this in two ways. 

In appendix A, we outline a stability analysis based on computed norms for the 
quantities of interest. This approach leads to rather exaggerated error estmates as one 
would expect. Tighter error bounds derived directly from the calculations by applying 
specific perturbations can be obtained. Our procedure was to apply small perturbations 
to each of the elements ofA in turn and to compute the resulting changes in probabilities. 
A relatively crude but convenient and conservative error estimate is then obtained by 
adding the absolute values of the changes in probabilities resulting from all the 
perturbations in A,. The changes in the probability vectors corresponding to the worst 
possible case, namely constructive addition of all perturbations-using a 1% shift in 
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each of the elements of A-are then noted and recorded in table l ( b )  for solution A 
only, for illustration. The ’analytic’ norm for this case resulted in a maximum error 
that was ahout 0.14 which is ahout five times larger than the largest of the ’numerical’ 
error estimates. 

It is thus clear from the table that these numerical norms yield more realistic bounds 
than the analytical noms,  though we note that the purpose of calculating these is not 
to obtain accurate error estimates so much as to show where the problem is ill- 
conditioned. This does not occur in the present example where this procedure leads 
to perturbations in the larger probabilities-which are the physically significant 
ones-of only about 5% or less; however, if very large errors in probabilities were to 
result from perturbations in A this would clearly warn the user to anticipate serious 
uncertainties in such properties as transition rates between states that depend on the 
probabilities. 

We next consider some aspects of complex solutions, case 2. These are the instances 
where the set of diagonal matrix elements yielding the observed spectrum is complex 
but one can calculate a set of real diagonal elements, denoted by d*, that yield an 
approximation of the observed spectrum A, denoted A*, as described earlier in 
section 2 .  

In table 2 ( a )  we record the optimum sets of diagonal matrix elements, d*, obtained 
as described in section 2, along with the corresponding eigenvalues for the four case 
2 solutions obtained by our procedure. These results refer again to the (I+) levels. In 
table 2 ( b )  we give the raw and corrected probabilities for each of the solutions that 
were found and, for solution G which is the one closest to the calculated (raw) solution, 
we give the fluctuations induced by an accumulation of 1% fluctuations in the elements 
of A as was done in table l ( b )  for the real solutions. 

This solution G is markedly closer to the raw, calculated one than any of the others 
though it is substantially further than the real solution A as we can see from the norms 
I/Sdll and IlSPJ quoted in tables 1 and 2. It is also the case 2 solution that gives the 
set of eigenvalues, A*, closest to the observed values. The errors on the probabilities 
indicate that this solution is comparable in stability to the real solution, A. 

It is, of course, not necessarily the case that the corrected solution corresponding 
to the observed spectrum that is closest to the raw solution is a real solution as in the 
foregoing set of levels, and indeed there may be no real solutions. Such is the situation 
for the present calculation of four coupled ( 2 - )  levels in Ti XI11 where we are therefore 
forced to consider a complex nearby solution, d*, as the one best suited for use in 
calculating corrected atomic properties. 

We record in table 3 our results for the case 2 solutions found for these (2-) levels. 
We see from the IISA, 11 values in table 3 that the approximate solution B comes closest 
to the observed eigenvalues followed by D and then A. There would be a modest 
perturbation of the matrix A that would cause B to be real, in fact, while leaving A 
‘complex’. Nevertheless A is still the preferred approximation to the physical problem. 
That this is the case becomes apparent from examining the relation of the diagonal 
matrix elements, d , ,  and more importantly the probability vectors, P,. Approximate 
solution A is clearly the one that evolves from the original calculation. The probability 
vectors of A are similar to the raw vectors while those of B and D are entirely different. 
That a complex solution, d,, evolved from the raw calculation (with a real solution 
perhaps occurring elsewhere) is an accident of the closeness of the real-complex 
boundary surface (SA) to this solution, not a reflection on the accuracy or relevance 
of this complex solution. 
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Table 2. Case 2 solutions to inverse eigenvalue problem. ( 0 )  Raw and corrected diagonal 
matrix elemenis and eigenvalues for ( I f )  levels in Ti XI11 ion. ( b )  Raw and corrected 
probability vectors corresponding to eigenvalues in ( a ) .  

(U) 

Raw G H I J .I,,, w 

4 0.053 93 0.031 I I  0.140 60 -0.045 81 0.094 10 
4 0.084 76 0.068 88 0.000 77 -0.169 33 0.039 56 
4 0.05615 0.08908 0.03902 0.11329 -0.19564 
4 -0.19484 -0.18908 -0.18039 0.101 86 0.061 98 
11 W l t  0.043 48 0.122 75 0.407 19 0.36471 

A: 0.16614 0.16763 0.18858 0.17248 0.16425 0.16629 
A: 0.101 7 1  0.113 25 0.079 70 0.103 14 0.105 81 0.103 93 
A: -0.04441 -0.05692 -0.043 13 -0.05221 -0.042 24 -0.046 75 
A: -0.223 50 -0.223 95 -0.225 I5 -0.223 41 -0.227 61 -0.223 47 
116A~Il1 0.006 44 0.017 20 0.035 78 0.013 85 
116A~Il5 0.003 19 0.013 87 0.033 16 0.008 29 

Raw G H I J 

PI 0.031 0.00010.000 0.881 0.007 0.137 
0.661 0.47210.018 0.052 0.078 0.444 
0.230 0.45410.021 0.066 0.467 0.018 
0.078 0.07410.003 0,001 0.448 0.402 

IISP, lln 0.295 1.061 0.730 0.456 

P2 0.608 0.51910.014 0.001 0.115 0.784 
0.037 0.210*0.0l8 0.417 0.028 0.004 
0.354 0.26610.008 0.481 0.437 0.051 
0.001 0.00510.001 0.102 0.420 0.161 

1l6P~lI 0.214 0.734 0.652 0.387 

P3 0.360 0.478+0.014 0.116 0.776 0.043 
0.221 0.225 10.009 0.382 0.083 0.502 
0.408 0.27510.015 0.449 0.067 0.024 
0.01 1 0.02210.003 0.053 0.074 0.431 

IlSP3ll 0.178 0.298 0.559 0.709 

P4 0.001 0.00210.000 0.002 0.102 0.036 
0.080 0.09310.004 0.149 0.811 0.050 
0.008 0.005*0.001 0.004 0.030 0.907 
0.911 0.89910.000 0.844 0.058 0.006 

IISP4ll 0.018 0.096 1.128 1.276 

t Where 116d'lI = l ld,sw-d*l \ .  
t Il6A:ll = l lAraw-A* I l .  
F Il6.\211=11~-~*11. 
9 Where lI6P,lI = llP,,7d* - Pfll. 

Two questions are now of primary interest: we can ask as in the real case whether 
the solutions are stable with respect to fluctuations in the elements of A as before in 
the real case. Also, although the computed off-diagonal matrix A does not yield a real 
solution near the point in question, we can ask what change in the elements of A will 
allow a real solution near that point. In other words we enquire as to whether the 
solution A which yields a non-zero minimum of IlA-wII would be a reasonable 
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Table 3. Case 2 solutions to inverse eigenvalue problem. ( a )  Raw and corrected diagonal 
matrix elements and eigenvalues for (2-) levels of  Ti X l l l  ion. ( b i  Raw and corrected 
probability vectors corresponding to eigenvalues of (a). 

( a i  

Raw A B C D E A,,, 0 

d? 0.020 43 0.017 93 0.062 72 -0.103 41 0.071 37 0.073 10 
Ll; 0.048 90 0.047 71 0.039 83 9.957 39 -0.097 98 0.004 28 
d :  0.038 20 0.037 90 -0.004 72 0.069 66 -0.008 38 -0.105 99 
d: -0.107 54 -0,103 54 
Il6d*llt 0.004 87 

A? 0.123 15 
0.101 08 

A: -0.072 04 
L *  - 0 . E  ID iihi 0.003 90 
l l ~ ~ * I l §  0.003 SO 

-0.097 83 
0.061 70 

0.123 25 
0.102 11 

-0.073 39 

0.004 52 
0.001 84 

-n 1 < I  07 
".,_I. 7 ,  

-0.023 64 
0.153 09 

0.155 69 
0.075 25 

-0.085 35 
-0.l45 5: 

0.046 11 
0.044 70 

0.035 00 
0.21600 

0.12503 
0.102 55 

-0.075 51 
=n.l52n7 

0.006 29 
0.002 08 

0.028 61 
0.209 98 

0.12985 0.123 19 0.12340 
0.101 11 0.102 69 0.103 45 

-0.079 13 -0.070 50 -0.07460 
-n IC, Q 2  -fi,l5539 -0,!52?? -"..,, "2 

0.011 58 
0.008 23 

Raw A B C D E 

PI 0.002 0.001 *0.001 0.511 0.001 0.325 0.254 
0.522 0.509*0.028 0.433 0.364 0.021 0.399 
0.305 0.314zt0.034 0.009 0.384 0.345 0.01 1 
0.171 0.176*0.005 0.047 0.252 0.309 0.336 

Il~p$lla 0.017 0.608 0.195 0.613 0.439 

P2 0,523 0.519+0.017 0.203 0.188 0.490 0.588 
0.160 0.171 k0.032 0.207 0.381 0.188 0.010 
0.316 0.310zt0.014 0.429 0.424 0.001 0.169 
0.000 O.OOO+O.OOO 0.160 0.007 0.319 0.223 

Il~P~ll 0.013 0.378 0.415 0.450 0.321 

P3 0.475 0.480*0.018 0.285 0.007 0.110 0.066 
0.207 0.204*0.006 0.257 0.156 0.004 0.566 
0.318 0.315 zt0.015 0.452 0.099 0.626 0.002 
0.001 0.001 *0.001 0.006 0.738 0.260 0.366 

II ap, /I 0.007 0.238 0.902 0.580 0.727 

P4 0.000 o.ooo*o.ooo 0.000 0.805 0.074 0.092 
0.111 0.115-tO.007 0.104 0.100 0.787 0.025 
0.061 0.062*0.006 0.109 0.093 0.028 0.817 
0.828 0.823+0.005 0.787 0.003 0.110 0.065 

IISPA 0.006 0.064 1.153 0.989 1.082 

t Where 1/6d*II= lld,aw-d*ll. 
$Where ~ l 6 A ~ ~ l = l l A , ~ ~ - A * l ~ .  
§ ll6AZlI=llw-**Il. 
11 Where IlSP,Il = llP,.rdw- P?lI. 

approximation for the physical state given that the computed A is subject to modest 
errors. 

For the first question, we record in table 3 the changes in probability vectors 
resulting from perturbations in A. This information corresponds to that in table 2 for 
the real solutions and it appears that these solutions are again fairly stable. Constructive 
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addition of the results of 1% shifts in the elements of A lead to maximum probability 
shifts of 0.03 roughly, so there is no sign of significant ill-conditioning, 

Concerning the second question, we note that in complex cases, when D, A*, and 
the eigenvectors are known, it is possible to perturb A to A+AA in such a way that 
the eigenvectors, hence the probabilities, are unchanged and the eigenvalues of the 
new matrix D + A +  AA are w, the observed eigenvalues. For this perturbation we have 

D + A +  AA = [xj~](diag(wi))[xj*]' (16) 

A S Deakin and T M Luke 

and hence 

AA= [xjk](diag(w, -Af))[xjx]'. (17) 

This perturbation is interesting in that it gives the change in A that yields a matrix 
with the observed spectrum, w, and the same eigenvectors or equivalently the same 
probabilities as those of the corrected matrix A+ D* which results from the non-zero 
optimum of IIA -wII .  If the resulting changes in A are within the expected range of 
its errors in a given calculation, the non-zero optimum can justifiably be used for 
calculating eigenvectors and resulting physical properties for the system. 

We record in table 4 some relevant numerical results, namely the fluctuations in 
the elements of A required to produce a real solution that is very close to the 'optimum' 
solution, A, and has as described in the foregoing the same eigenvectors but with the 
observed eigenvaiues. i n  this exampie, at ieast, the perturbations on A are very 
small-less than 3% changes in the larger elements, which are the significant ones for 
mixing levels, yield a real solution in place of A. We also see from table 3 that the 
probability vectors are reasonably stable in the neighbourhood of the solution A. In 
this case, therefore, it is acceptable to use the eigenvectors from solution A as corrected 
vectors for the problem. 

Table 4. Elements of off-diagonal matrix A and the fluctuations required to produce a 
matrix A+ D with observed eigenvalues and the eigenvectors obtained from optimum 
solution A. 

0 Ai. W. 

12 0.56E-1 O.1SE-2 
13 0.66E-1 0.19E-2 
14 0.51E-4 -0.3SE-4 
23 -0.3 I E-I -0.20E-3 
24 -0.82E-I -0.46E-4 
34 0.6SE-I 0.12E-3 

The present calculation is of course somewhat unfortunate inasmuch as  it is actually 
too accurate so that it is somewhat misleading. As we have pointed out, the corrected 
solution A is within the noise of a real corrected solution with the observed eigenvalues 
and the corrected eigenvectors. At the same time, from the fluctuations in the proba- 
bilities recorded in table 3, we see that even the raw solution does not differ significantly 
irom the optimum corrected soiution. One might as weii use the raw resuits in ihis 
case it seems. Nevertheless, the point is obviously that in another calculation the 
corrected solution could move substantially away from the raw calculation so that the 
latter would not be useful. In this case, considerations analogous to those illustrated 
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in table 4 would be important in showing whether the optimum corrected solution was 
reasonable. 

To conclude, we have described a method for applying inverse eigenvalue problem 
corrections to calculations in atomic systems. We have discussed questions of errors 
and shown how our approach can be used directly to judge the validity of the corrected 
solutions we obtain. 
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Appendix A. Estimate of errors for case 1 

Suppose we have obtained a solution of A +  D =XCIXT where Cl is the diagonal matrix 
of eigenvalues and X is the matrix of eigenvectors. If we perturb A to A+AA, reflecting 
errors in the computed A matrix, then perturbations AD and AX are induced in D and 
X. We estimate AD and AX using the linearizing approach in 'method 111' of Friediand 
et al (1987). 

Let X+AX=X e" where Y'= -Y. Substituting into 

(X + AX) '(A+ D + AA + AD)(X + AX) = n (AI) 

and expanding ey, so that AX=XY, we obtain the linearized form 

x'(A+ D+ AA+AD)X- n + ~ n  - a y .  (A2) 

Hence 

X ~ ( A A + A D ) X = Y ~ - C L Y .  

Upon equating diagonal and off-diagonal elements we obtain the following two 
equations. 

JAd= -[(X,)'AAX,] (A4) 

and 

y, ( W, - W ,  ) = ( X, ) r( AA + AD) X, . (A5) 

We also estimate an upper limit for the resulting perturbation in the probabilities. 
This is defined by 

AP,, = (X,, +AX,,)2 -(X,k)2= 2X,kAX,k 

=I 2xtkx8lylh (A61 
I 

where Y!k is given by equation (A5). 
We assume the elements of A to be subject to a percentage error, P, so that 

P 
100 

AA2, = f- A, 
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Without taking the specific structure of AAv into account, we now construct upper 
estimates for Ad and AP,k as follows. Using equation (A4) and taking norms we obtain 

IIAdllm= /I J-'Ilmll(X,)TAA%IIm. 

/(X,)TAAX,/ II(X,)11211AAllzllX, 112. 

Also 

%.e eiger?vec!nrs ,y are .Inrr%?!ized and Fer ?he symmetric matrix h b  "'e hare 

IIAAI12s IIAAII, = IlAAllm. 

Therefore 

IX:AAX,ls IlAAll, 

and finally 

Deriving a bound on APg we have, using equation (A6), 

where we have used equation (A7). 
Note that l/C(i, k)1I2 can be simplified: 

, 
which is readily calculated. 

The maximum error defined as Maxi+ (P,k(  can now be readily calculated 
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